Coefficiente angolare - puzzle online

In geometria analitica il coefficiente angolare (in lingua inglese slope, pendenza) di una retta non verticale nel piano cartesiano è il coefficiente

m

{\displaystyle m}

che compare nella sua equazione, scritta nella forma :

y

=

m

x

+

q

{\displaystyle y=mx+q\;}

.Partendo dai coefficienti dell' equazione generale

a

x

+

b

y

+

c

=

0

{\displaystyle ax+by+c=0}

,con

b

0

{\displaystyle b\neq 0}

(retta non verticale), il coefficiente angolare è espresso dal rapporto

m

=

a

b

{\displaystyle m=-{\frac {a}{b}}}

.Due rette (non verticali) sono parallele esattamente quando hanno lo stesso coefficiente angolare; in particolare, il coefficiente angolare della retta passante per l'origine,

y

=

m

x

{\displaystyle y=mx}

è la tangente degli angoli formati dalla retta con l'asse delle ascisse: la retta infatti passa per il punto di coordinate

(

x

1

,

y

1

)

=

(

cos

(

α

)

,

sin

(

α

)

)

{\displaystyle (x_{1},y_{1})=(\cos(\alpha ),\sin(\alpha ))}

, quindi

m

=

y

1

x

1

=

sin

(

α

)

cos

(

α

)

=

tan

(

α

)

{\displaystyle m={\frac {y_{1}}{x_{1}}}={\frac {\sin(\alpha )}{\cos(\alpha )}}=\tan(\alpha )}

.Il coefficiente angolare di una retta (non verticale) è il rapporto tra la differenza delle ordinate e la differenza delle ascisse fra due punti distinti della retta,

(

x

1

,

y

1

)

{\displaystyle (x_{1},y_{1})}

e

(

x

2

,

y

2

)

{\displaystyle (x_{2},y_{2})}

:

{

y

1

=

m

x

1

+

q

y

2

=

m

x

2

+

q

q

=

y

1

m

x

1

=

y

2

m

x

2

m

(

x

1

x

2

)

=

(

y

1

y

2

)

m

=

y

2

y

1

x

2

x

1

=

Δ

y

Δ

x

{\displaystyle {\begin{cases}y_{1}=mx_{1}+q\\y_{2}=mx_{2}+q\end{cases}}\Rightarrow q=y_{1}-mx_{1}=y_{2}-mx_{2}\Rightarrow m(x_{1}-x_{2})=(y_{1}-y_{2})\Rightarrow m={\frac {y_{2}-y_{1}}{x_{2}-x_{1}}}={\frac {\Delta y}{\Delta x}}}

Per una retta verticale, di equazione

x

=

x

0

{\displaystyle x=x_{0}}

, questa espressione è priva di significato: due distinti punti della retta hanno diverse coordinate

y

{\displaystyle y}

ma uguali coordinate

x

{\displaystyle x}

, quindi per calcolare il rapporto bisognerebbe dividere per zero (al contrario, in geometria proiettiva il simbolo

(

1

:

0

)

{\displaystyle (1:0)}

è ben definito).

Considerando la retta come grafico di una funzione

f

(

x

)

=

m

x

+

q

{\displaystyle f(x)=mx+q}

, il suo coefficiente angolare è la derivata della funzione:

f

(

x

)

=

m

{\displaystyle f'(x)=m}

. (La retta tangente è la retta stessa.)

Poiché due rette in forma generale,

a

x

+

b

y

+

c

=

0

{\displaystyle ax+by+c=0}

e

a

x

+

b

y

+

c

=

0

{\displaystyle a'x+b'y+c'=0}

, sono perpendicolari esattamente quando

a

a

+

b

b

=

0

{\displaystyle aa'+bb'=0}

, ne segue che due rette (non verticali)

y

=

m

x

+

q

{\displaystyle y=mx+q}

e

y

=

m

x

+

q

{\displaystyle y=m'x+q'}

sono perpendicolari esattamente quando il prodotto dei loro coefficienti angolari è

m

m

=

1

{\displaystyle mm'=-1}

.Questa condizione può essere riscritta come

m

=

1

m

{\displaystyle m'=-{\frac {1}{m}}}

, ed espressa dicendo che

m

{\displaystyle m'}

è l'antireciproco (opposto del reciproco) di

m

{\displaystyle m}

.

Ramsau al Dachstein puzzle onlinepaesaggio invernale puzzle onlinePaw Patrol di Natale puzzle onlineMacroeconomia. puzzle onlineCappella Valle puzzle onlinePicco Bunson puzzle onlineIncasCultura puzzle onlinetreno sul ponte puzzle onlineSvizzera, Cantone di San Gallo, Alpi. puzzle onlineluna sopra le montagne puzzle onlinePaesaggio, neve, montagne, inverno. puzzle onlinePARCO EOLICO SICILIA puzzle onlineÈ come se dipingessi l'erba puzzle onlineSaltatori con gli sci polacchi puzzle onlinevetta di montagna nebbiosa puzzle onlinealberi di pino innevati durante il giorno puzzle onlineLa strada per Morskie Oko. puzzle onlineKandinsky. puzzle onlineAnde (Cordillera de los Andes) puzzle onlineTavola periodica puzzle onlinestemma del panama puzzle onlinein montagna puzzle onlineFortezza, Castello, Ucraina puzzle onlineIl fienile rosso del vecchio MacDonald puzzle online
Aia, tenuta puzzle onlineBellissima villa, paesaggio montano. puzzle onlineÈ arrivato l'inverno! puzzle onlineKamil Wiktor Stoch puzzle onlineblu cielo nuvoloso durante il giorno puzzle onlinecorsa in discesa puzzle onlineRisan nella baia di Kotor in Montenegro puzzle onlineFinestra del browser Chrome. puzzle onlineMontagna rocciosa bianca e marrone puzzle onlineIsola greca di Tinos. puzzle onlineCibo salutare. puzzle onlinependio di montagna puzzle onlineIn Svizzera. puzzle onlineparti di un progetto puzzle onlineCurva Morants, Parco Nazionale di Banff, Canada puzzle onlinePanorama dei Monti Tatra puzzle onlineCittà austriaca di Neustift, Tirolo puzzle onlineEstate in Svizzera. puzzle onlineCima della montagna puzzle onlineLuce solare invernale puzzle onlineTipi di scale puzzle onlineFrancia-Tignes Stazione invernale nelle montagne della Savoia puzzle onlineIslanda, mare, oceano puzzle onlineStadio di Poznań puzzle online
Copyright 2024 puzzlefactory.com Tutti i diritti riservati.