Coefficiente angolare - puzzle online

Animali da fattoria puzzle online
8Animali da fattoriarisolto 33 volte
Risolvi il puzzle
Strati dell'atmosfera puzzle online
81Strati dell'atmosferarisolto 33 volte
Risolvi il puzzle
Circolo polare artico norvegese puzzle online
220Circolo polare artico norvegeserisolto 33 volte
Risolvi il puzzle
Montagne Baviera puzzle online
150Montagne Bavierarisolto 33 volte
Risolvi il puzzle
Prato di montagna puzzle online
160Prato di montagnarisolto 33 volte
Risolvi il puzzle
Montagna Natura puzzle online
144Montagna Naturarisolto 33 volte
Risolvi il puzzle
Paesaggio delle montagne puzzle online
150Paesaggio delle montagnerisolto 33 volte
Risolvi il puzzle
Montagne del deserto puzzle online
165Montagne del desertorisolto 33 volte
Risolvi il puzzle
Riva della costa del castello puzzle online
144Riva della costa del castellorisolto 33 volte
Risolvi il puzzle
Pirenei Francia puzzle online
96Pirenei Franciarisolto 33 volte
Risolvi il puzzle
Protocollo per le uscite pedagogiche puzzle online
48Protocollo per le uscite pedagogicherisolto 33 volte
Risolvi il puzzle
Immagine del sistema digestivo puzzle online
25Immagine del sistema digestivorisolto 33 volte
Risolvi il puzzle
Dieci orologio puzzle online
165Dieci orologiorisolto 33 volte
Risolvi il puzzle
Undici Orologio puzzle online
165Undici Orologiorisolto 33 volte
Risolvi il puzzle
Maria a Pasqua puzzle online
80Maria a Pasquarisolto 33 volte
Risolvi il puzzle
Badge di condivisione puzzle online
144Badge di condivisionerisolto 33 volte
Risolvi il puzzle
Un paesaggio innevato puzzle online
150Un paesaggio innevatorisolto 33 volte
Risolvi il puzzle
Cappella, Montagna, Inverno, Neve. puzzle online
216Cappella, Montagna, Inverno, Neve.risolto 34 volte
Risolvi il puzzle
donna in giacca nera che tiene la slitta da neve bianca e rossa puzzle online
30donna in giacca nera che tiene la slitta da neve bianca e rossarisolto 32 volte
Risolvi il puzzle
Gregor Schlierenzauer puzzle online
6Gregor Schlierenzauerrisolto 32 volte
Risolvi il puzzle
montagne marroni e verdi sotto nuvole bianche e cielo blu puzzle online
70montagne marroni e verdi sotto nuvole bianche e cielo blurisolto 32 volte
Risolvi il puzzle
tramonto puzzle online
20tramontorisolto 32 volte
Risolvi il puzzle
Kamil Wiktor Stoch puzzle online
35Kamil Wiktor Stochrisolto 32 volte
Risolvi il puzzle
prima neve puzzle online
77prima neverisolto 32 volte
Risolvi il puzzle
alberi di pino verde sulla montagna durante il giorno puzzle online
49alberi di pino verde sulla montagna durante il giornorisolto 32 volte
Risolvi il puzzle
montagna coperta di neve sotto il cielo nuvoloso durante il giorno puzzle online
63montagna coperta di neve sotto il cielo nuvoloso durante il giornorisolto 32 volte
Risolvi il puzzle
formazione rocciosa grigia sotto il cielo blu durante il giorno puzzle online
12formazione rocciosa grigia sotto il cielo blu durante il giornorisolto 32 volte
Risolvi il puzzle
alberi verdi sotto nuvole bianche durante il giorno puzzle online
40alberi verdi sotto nuvole bianche durante il giornorisolto 32 volte
Risolvi il puzzle
montagna innevata vicino al corpo d'acqua durante il giorno puzzle online
12montagna innevata vicino al corpo d'acqua durante il giornorisolto 32 volte
Risolvi il puzzle
pittura astratta marrone e bianca puzzle online
12pittura astratta marrone e biancarisolto 32 volte
Risolvi il puzzle
persona che cammina sulla montagna coperta di neve durante il giorno puzzle online
216persona che cammina sulla montagna coperta di neve durante il giornorisolto 32 volte
Risolvi il puzzle
Follia invernale puzzle online
25Follia invernalerisolto 32 volte
Risolvi il puzzle
uccelli che volano sopra alberi verdi e marroni durante il giorno puzzle online
209uccelli che volano sopra alberi verdi e marroni durante il giornorisolto 32 volte
Risolvi il puzzle
Creazione n. 28 puzzle online
130Creazione n. 28risolto 32 volte
Risolvi il puzzle
Vista aerea del campo innevato durante il giorno puzzle online
16Vista aerea del campo innevato durante il giornorisolto 32 volte
Risolvi il puzzle
Persona in giacca nera su terra coperta di neve puzzle online
117Persona in giacca nera su terra coperta di neverisolto 32 volte
Risolvi il puzzle
Molecola del DNA della vita puzzle online
20Molecola del DNA della vitarisolto 32 volte
Risolvi il puzzle
Pini verdi vicino a montagna durante il giorno puzzle online
117Pini verdi vicino a montagna durante il giornorisolto 32 volte
Risolvi il puzzle
Pittura astratta blu e bianca puzzle online
96Pittura astratta blu e biancarisolto 32 volte
Risolvi il puzzle
Alberi verdi sulla montagna rocciosa sotto il cielo blu durante il giorno puzzle online
108Alberi verdi sulla montagna rocciosa sotto il cielo blu durante il giornorisolto 32 volte
Risolvi il puzzle
Tutto ama Loona. puzzle online
12Tutto ama Loona.risolto 32 volte
Risolvi il puzzle
VULCANO IN ERUZIONE puzzle online
16VULCANO IN ERUZIONErisolto 32 volte
Risolvi il puzzle
Montagna marrone sotto il cielo blu durante il giorno puzzle online
48Montagna marrone sotto il cielo blu durante il giornorisolto 32 volte
Risolvi il puzzle
Laboratorio univoco puzzle online
15Laboratorio univocorisolto 32 volte
Risolvi il puzzle
Montagne marroni sotto le nuvole bianche durante il giorno puzzle online
216Montagne marroni sotto le nuvole bianche durante il giornorisolto 32 volte
Risolvi il puzzle
Nicholas Roerich. puzzle online
160Nicholas Roerich.risolto 32 volte
Risolvi il puzzle
Gustose pepite di pollo puzzle online
12Gustose pepite di pollorisolto 32 volte
Risolvi il puzzle
Illustrazione grigia e blu puzzle online
182Illustrazione grigia e blurisolto 32 volte
Risolvi il puzzle

Puzzle online Coefficiente angolare

In geometria analitica il coefficiente angolare (in lingua inglese slope, pendenza) di una retta non verticale nel piano cartesiano è il coefficiente

m

{\displaystyle m}

che compare nella sua equazione, scritta nella forma :

y

=

m

x

+

q

{\displaystyle y=mx+q\;}

.Partendo dai coefficienti dell' equazione generale

a

x

+

b

y

+

c

=

0

{\displaystyle ax+by+c=0}

,con

b

0

{\displaystyle b\neq 0}

(retta non verticale), il coefficiente angolare è espresso dal rapporto

m

=

a

b

{\displaystyle m=-{\frac {a}{b}}}

.Due rette (non verticali) sono parallele esattamente quando hanno lo stesso coefficiente angolare; in particolare, il coefficiente angolare della retta passante per l'origine,

y

=

m

x

{\displaystyle y=mx}

è la tangente degli angoli formati dalla retta con l'asse delle ascisse: la retta infatti passa per il punto di coordinate

(

x

1

,

y

1

)

=

(

cos

(

α

)

,

sin

(

α

)

)

{\displaystyle (x_{1},y_{1})=(\cos(\alpha ),\sin(\alpha ))}

, quindi

m

=

y

1

x

1

=

sin

(

α

)

cos

(

α

)

=

tan

(

α

)

{\displaystyle m={\frac {y_{1}}{x_{1}}}={\frac {\sin(\alpha )}{\cos(\alpha )}}=\tan(\alpha )}

.Il coefficiente angolare di una retta (non verticale) è il rapporto tra la differenza delle ordinate e la differenza delle ascisse fra due punti distinti della retta,

(

x

1

,

y

1

)

{\displaystyle (x_{1},y_{1})}

e

(

x

2

,

y

2

)

{\displaystyle (x_{2},y_{2})}

:

{

y

1

=

m

x

1

+

q

y

2

=

m

x

2

+

q

q

=

y

1

m

x

1

=

y

2

m

x

2

m

(

x

1

x

2

)

=

(

y

1

y

2

)

m

=

y

2

y

1

x

2

x

1

=

Δ

y

Δ

x

{\displaystyle {\begin{cases}y_{1}=mx_{1}+q\\y_{2}=mx_{2}+q\end{cases}}\Rightarrow q=y_{1}-mx_{1}=y_{2}-mx_{2}\Rightarrow m(x_{1}-x_{2})=(y_{1}-y_{2})\Rightarrow m={\frac {y_{2}-y_{1}}{x_{2}-x_{1}}}={\frac {\Delta y}{\Delta x}}}

Per una retta verticale, di equazione

x

=

x

0

{\displaystyle x=x_{0}}

, questa espressione è priva di significato: due distinti punti della retta hanno diverse coordinate

y

{\displaystyle y}

ma uguali coordinate

x

{\displaystyle x}

, quindi per calcolare il rapporto bisognerebbe dividere per zero (al contrario, in geometria proiettiva il simbolo

(

1

:

0

)

{\displaystyle (1:0)}

è ben definito).

Considerando la retta come grafico di una funzione

f

(

x

)

=

m

x

+

q

{\displaystyle f(x)=mx+q}

, il suo coefficiente angolare è la derivata della funzione:

f

(

x

)

=

m

{\displaystyle f'(x)=m}

. (La retta tangente è la retta stessa.)

Poiché due rette in forma generale,

a

x

+

b

y

+

c

=

0

{\displaystyle ax+by+c=0}

e

a

x

+

b

y

+

c

=

0

{\displaystyle a'x+b'y+c'=0}

, sono perpendicolari esattamente quando

a

a

+

b

b

=

0

{\displaystyle aa'+bb'=0}

, ne segue che due rette (non verticali)

y

=

m

x

+

q

{\displaystyle y=mx+q}

e

y

=

m

x

+

q

{\displaystyle y=m'x+q'}

sono perpendicolari esattamente quando il prodotto dei loro coefficienti angolari è

m

m

=

1

{\displaystyle mm'=-1}

.Questa condizione può essere riscritta come

m

=

1

m

{\displaystyle m'=-{\frac {1}{m}}}

, ed espressa dicendo che

m

{\displaystyle m'}

è l'antireciproco (opposto del reciproco) di

m

{\displaystyle m}

.