Nabla - puzzles en ligne
Nabla
Nabla, noté
∇
→
{\displaystyle {\overrightarrow {\nabla }}}
ou
∇
{\displaystyle \nabla }
selon les conventions utilisées, est un symbole mathématique pouvant aussi bien désigner le gradient d'une fonction en analyse vectorielle qu'une connexion de Koszul en géométrie différentielle. Les deux notions sont reliées, ce qui explique l'utilisation d'un même symbole. En physique, il est utilisé en dimension 3 pour représenter aisément plusieurs opérateurs vectoriels, couramment utilisés en électromagnétisme et en dynamique des fluides.
C'est un moyen mnémotechnique pour les opérateurs différentiels de champs : les formules du gradient, de la divergence et du rotationnel se retrouvent en appliquant les règles habituelles du produit scalaire et du produit vectoriel à cet opérateur ; néanmoins la formule du laplacien vectoriel (qui s'écarte de la formule du double produit vectoriel) montre les limites de ce formalisme (à l'origine du concept d'algèbre géométrique).