Circunferência - puzzles online

Na geometria euclidiana, uma circunferência é o lugar geométrico dos pontos de um plano que equidistam de um ponto fixo. O ponto fixo é o centro e a equidistância o raio da circunferência.

Definição Formal

Circunferência é um conjunto dos pontos de um plano cuja distância a um ponto dado desse plano é igual a uma distância (não nula) dada. O ponto dado é o centro e a distância dada é o raio da circunferência.

Assim, dados um plano

α

{\displaystyle \alpha }

, um ponto

O

{\displaystyle O}

e uma distância

r

{\displaystyle r}

, temos:

λ

(

O

,

r

)

=

{

P

α

/

d

P

,

O

=

r

}

{\displaystyle \lambda \left(O,r\right)=\left\{P\in \alpha /\quad {d_{P,O}=r}\right\}}

,

onde

λ

(

O

,

r

)

{\displaystyle \lambda \left(O,r\right)}

representa a circunferência de centro

O

{\displaystyle O}

e raio

r

{\displaystyle r}

.

Posições relativas entre ponto e circunferência

Dado um ponto

X

{\displaystyle X}

e uma circunferência

λ

(

O

,

r

)

{\displaystyle \lambda \left(O,r\right)}

, temos

X

é interno a

λ

d

X

,

O

<

r

{\displaystyle X\quad {\text{é interno a }}\lambda \qquad \Longleftrightarrow \quad {d_{X,O}

, ou seja, um ponto qualquer é interno a uma circunferência se, e somente se, a distância desse ponto até o centro da circunferência é menor do que o raio da circunferência.

X

pertence a

λ

d

X

,

O

=

r

{\displaystyle X\quad {\text{pertence a }}\lambda \qquad \Longleftrightarrow \quad {d_{X,O}=r}}

, ou seja, um ponto qualquer pertence (ou está sobre) a uma circunferência se, e somente se, a distância desse ponto até o centro da circunferência é igual ao raio da circunferência.

X

é externo a

λ

d

X

,

O

>

r

{\displaystyle X\quad {\text{é externo a }}\lambda \qquad \Longleftrightarrow \quad {d_{X,O}>r}}

, ou seja, um ponto qualquer é externo a uma circunferência se, e somente se, a distância desse ponto até o centro da circunferência é maior do que o raio da circunferência.Assim, com base nessas definições, podemos definir interior e exterior de uma circunferência.

O interior de uma circunferência é o conjunto dos pontos internos a ela e o exterior de uma circunferência é o conjunto de pontos externos a ela.

Quando unimos o interior de uma circunferência à própria circunferência temos um círculo ou um disco.

Dennis, o Ameaçador, vai pescar com o Sr. Wilson quebra-cabeças onlinePARÁBOLA puzzle onlineUNIÃO EUROPEIA puzzle onlineJoia puzzle onlineLucy vira a atuação de Schroeder. quebra-cabeças onlinesegurança puzzle onlineOvos de Páscoa para quebra-cabeças de quatro anos puzzle onlineSenhora Bédague puzzle onlinechapéu quebra-cabeças onlinePágina para colorir bola de flores puzzle onlineCírculo de pedras de Lake District Keswick Castlerigg quebra-cabeças onlineMeh emoji: / quebra-cabeças onlineCABEÇA DE MORTES quebra-cabeças onlineFoi doce quebra-cabeças onlineA pequena Sereia quebra-cabeças onlineToque de anjo quebra-cabeças onlinecartões de crédito quebra-cabeças onlineRepública Federal da Alemanha puzzle onlineCapital da croácia quebra-cabeças onlinedados brancos e pretos na superfície branca quebra-cabeças onlineVisão puzzle onlineborboleta puzzle onlinebugigangas florais vermelhas e brancas quebra-cabeças onlinepessoa segurando boné do Mickey Mouse quebra-cabeças online
expressões quebra-cabeças onlinepintura abstrata amarela e branca puzzle onlineBalão de ar quente quebra-cabeças onlineCara kawaii fofa puzzle onlinehomem aranha quebra-cabeças onlinehabilidades puzzle onlineQuebra-cabeça de Educação Física puzzle onlineAnimais da floresta quebra-cabeças onlineShag ...... puzzle onlineAs notícias na rádio EXCÉLSIOR quebra-cabeças onlineOvos de Páscoa a céu aberto quebra-cabeças onlinepintura abstrata amarela e branca quebra-cabeças onlinePáscoa quebra-cabeças onlineIluminação de lâmpadas lustres puzzle onlineWinnie the Pooh e KłaPouche Day puzzle onlineO monstro de cores puzzle onlinecalendário indígena quebra-cabeças onlineCúpula da mesquita em Tetovo Nordmasedonia puzzle onlineGeórgia em um copo. quebra-cabeças onlinePuzza la Salle. quebra-cabeças onlinesatisfatório puzzle onlinequebra-cabeça impossível puzzle onlineJuventus. quebra-cabeças onlineModem melhorado puzzle online
Copyright 2024 puzzlefactory.com Todos os direitos reservados.