zerfallen - Online-Puzzles
Die Normal- oder Gauß-Verteilung (nach Carl Friedrich Gauß) ist in der Stochastik ein wichtiger Typ stetiger Wahrscheinlichkeitsverteilungen. Ihre Wahrscheinlichkeitsdichtefunktion wird auch Gauß-Funktion, Gaußsche Normalverteilung, Gaußsche Verteilungskurve, Gauß-Kurve, Gaußsche Glockenkurve, Gaußsche Glockenfunktion, Gauß-Glocke oder schlicht Glockenkurve genannt.
Die besondere Bedeutung der Normalverteilung beruht unter anderem auf dem zentralen Grenzwertsatz, dem zufolge Verteilungen, die durch additive Überlagerung einer großen Zahl von unabhängigen Einflüssen entstehen, unter schwachen Voraussetzungen annähernd normalverteilt sind. Die Familie der Normalverteilungen bildet eine Lage- und Skalenfamilie.
Die Abweichungen der Messwerte vieler natur-, wirtschafts- und ingenieurwissenschaftlicher Vorgänge vom Erwartungswert lassen sich durch die Normalverteilung (bei biologischen Prozessen oft logarithmische Normalverteilung) entweder exakt oder wenigstens in sehr guter Näherung beschreiben (vor allem Prozesse, die in mehreren Faktoren unabhängig voneinander in verschiedene Richtungen wirken).
Zufallsvariablen mit Normalverteilung benutzt man zur Beschreibung zufälliger Vorgänge wie:
zufällige Streuung von Messwerten,
zufällige Abweichungen vom Sollmaß bei der Fertigung von Werkstücken,
Beschreibung der brownschen Molekularbewegung.In der Versicherungsmathematik ist die Normalverteilung geeignet zur Modellierung von Schadensdaten im Bereich mittlerer Schadenshöhen.
In der Messtechnik wird häufig eine Normalverteilung angesetzt, die die Streuung der Messfehler beschreibt. Hierbei ist von Bedeutung, wie viele Messpunkte innerhalb einer gewissen Streubreite liegen.
Die Standardabweichung
σ
{\displaystyle \sigma }
beschreibt die Breite der Normalverteilung. Die Halbwertsbreite einer Normalverteilung ist das ungefähr
2
,
4
{\displaystyle 2{,}4}
-Fache (genau
2
2
ln
2
{\displaystyle 2{\sqrt {2\ln 2}}}
) der Standardabweichung.