zentrum - Online-Puzzles

Der Begriff Mittelpunkt steht in der Geometrie in enger Beziehung zum Begriff des geometrischen Schwerpunkts. Er wird nicht zuletzt in folgenden Zusammenhängen benutzt:

Bei einer Strecke, einem Kreis, einer Kugel oder allgemein bei einer n-dimensionalen Sphäre ist der Mittelpunkt der Punkt, der von allen Punkten dieser Sphäre den gleichen (minimalen) Abstand besitzt. Diese Definition kann man allgemein in (vollständigen) metrischen Räumen vornehmen.

Bei Kegelschnitten und bei den durch Quadriken beschriebenen Flächen zweiter Ordnung (z. B. Ellipsoide oder Kegel ) sind die Mittelpunkte die Fixelemente einer Spiegelung, welche die vorgegebene Figur in sich selbst überführt. Alle Kegelschnitte mit Ausnahme der Parabeln haben genau einen Mittelpunkt ; eine Fläche zweiter Ordnung kann keinen, genau einen oder eine ganze Gerade oder Ebene von Mittelpunkten haben. Hat sie genau einen Mittelpunkt, wird sie als Mittelpunktsquadrik bezeichnet.

Beschreibung durch Koordinaten

Strecke

Ist der Endpunkt und der Anfangspunkt einer Strecke bekannt, so kann man die Koordinaten des Mittelpunktes über die Beziehungen

x

m

=

x

1

+

x

2

2

{\displaystyle \mathrm {x_{m}={\frac {x_{1}+x_{2}}{2}}} }

,

y

m

=

y

1

+

y

2

2

{\displaystyle \mathrm {y_{m}={\frac {y_{1}+y_{2}}{2}}} }

bzw. zusätzlich bei einer Strecke im Raum mit

z

m

=

z

1

+

z

2

2

{\displaystyle \mathrm {z_{m}={\frac {z_{1}+z_{2}}{2}}} }

ermitteln.

Kreis / Kugel

Ist eine Kreisgleichung der Form

r

2

=

(

x

a

)

2

+

(

y

b

)

2

{\displaystyle \mathrm {r^{2}=(x-a)^{2}+(y-b)^{2}} \,}

gegeben, so kann man die Koordinaten des Mittelpunktes direkt angeben über

M

(

a

,

b

)

{\displaystyle \mathrm {M(a,b)} \,}

.

Zamosc. Stadtzentrum. Puzzlespiel onlineOsloer Rathaus Online-PuzzleZamosc. Mietshäuser. Puzzlespiel onlineZamosc. Markt. Online-PuzzleSkyline der Stadt Online-PuzzleMarienkirche in Krakau Puzzlespiel onlineTheaterhalle Online-PuzzleAnna Dębska Puzzlespiel onlineOstrava Theater Tschechei Puzzlespiel onlineEin Panorama über Budapest Puzzlespiel onlineEin World Trade Center in New York City Puzzlespiel onlineZentrum für soziale Aktivität Puzzlespiel onlineTextur von grünen Zitronen-Limetten-Scheiben Online-PuzzleRed Dart-Pfeil-Treffer auf das Ziel Online-PuzzlePuzzle Online-PuzzleWonder Residency Puzzlespiel onlineWolkenkratzer Puzzlespiel onlineSonderwirtschaftszone Shenzhen, China Online-PuzzleTheater von Slowacki in Krakau Online-PuzzleAuf dem Marktplatz in Krakau Puzzlespiel onlineLodz. Straßenskulptur. Puzzlespiel onlineNuklear Online-Puzzlelogistisches Zentrum Puzzlespiel onlineHajnowka Puzzlespiel online
Copyright 2025 puzzlefactory.com Alle Rechte vorbehalten.